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Strategies in the secretary problem

Richard V. Kadison

Dedicated to the memory of Ellis Kolchin
dear friend and greatly admired colleague.

1. An anecdotal, early history. A problem that has come to be
known as “The Secretary Problem” is the focus of this note. My own ac-
quaintance with the problem goes back to 1953 and a faculty club lunch
table at Columbia University. At the lunch in question (Ellis Kolchin was
-present), one of the older physicists, having just returned from a consult-
ing trip to Washington, remarked, “The boys in Washington are wondering
whether there is a strategy for deciding which one of numbered balls in a box
has the largest number as you draw them out.” Of course, a quick comment
such as that is sufficiently ambiguous to require a few minutes of clarification.
What emerged was the following:

Problem. A boz contains e specified number n of balls each labeled with
an integer, positive or negative, and no two with the same integer. The
integers have their standard ordering. A player can cause a single ball to
be ejected from the boz by pressing a button, but has no information about
the integer labeling of the balls until, of course, a given ball is ejected and
available for inspection. The player does know n. As each ball is ejected, the
player must decide if it is labeled with the largest of all the labeling integers.
A win occurs just in the case where the player identifies the largest labeling
as the corresponding ball is ejected.

Now the very first thought most people have on hearing this problem,
and that included all of us at the lunch table, is that you might as well eject
one ball and name its labeling the largest; you have nothing else to go on.
And so declared one of the young physicists at the table. The probability of
winning was no better than % for a purported “strategy.” Prodded by the
caution mathematicians learn so painfully, I demurred, “Perhaps a little more
thought might show us a better strategy.” He challenged, “What possible
strategy is there?” At this point, I reached out quickly, somewhat wildly,
and as it turns out, very luckily. “We might reject the first ball, out of
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hand,” I said, “and then choose the next larger one ejected.” John Tate, one
of the mathematicians at that table, reached for a nearby paper napkin and
began writing on it. “Let’s try that when n is 3,” he said. Of course, we can
assume that the balls are in a single file tube and that we roll them out the
open end one after the other according to their order in the tube. So each
arrangement produces an ordering on which the strategy can be tested to
see whether or not it produces a win. For this purpose, we may also assume
that the balls are numbered 1, 2, and 3. John Tate’s quick check showed
that the strategy produces a win in three of the six cases; much better than
1. The young physicist remarked that this result was surely an anomaly of
the small value of n (as, in part, it is) and that, asymptotically (with n), no
strategy could produce better than a 1 chance of winning. I must confess
that that made appealing “physical sense” to me.

The next day at lunch, both John Tate and I reported that if you reject
1/e of the n balls and choose the next higher labeled ball to appear, you
win 1/e of the time — all this for large n (and, of course, to the nearest
integer). Apparently, he, as. I, at home that evening, had made the obvi-
ous generalization of the originally suggested strategy and checked for the
maximum.

My argument went as follows. If we make no use of the specific labeling
information (honor system!), we may assume that the balls are labeled 1
through n and refer to them by this label. We may also assume that a game
is specified by a permutation of the n balls and that they are ejected from
the box in order of their position (but not their labeling!). ¥, in a particular
game, (the ball labeled) n occupies the j th position, the game ends at the
J th draw. What the player does, depends on the labeled balls and their
ordering in the “initial segment” of length j — 1. With n in position j, there
are (" 1) sets of j — 1 balls that can form this j — 1 initial segment. If we
have declded as our strategy, to reject k£ balls and then to choose the next
larger labeling to appear, with » in the j th position, there is a loss if j < k.
If k < j, then there is a win with this strategy precisely when the largest
labeled ball of the set of j — 1 balls in the initial j — 1 segment is among the
k balls rejected, the first & balls. (In that position, it forces us to wait until
we reach the ball labeled n in position j and to declare that ball the largest.
Out of that position, and between the % th and j th positions, if it is reached,
it is sure to be declared the largest, in the present strategy, causing a loss.)
With the largest of the given set of j — 1 balls in a definite one of the first
k positions, there are (j — 2)! arrangements of the remaining j — 2 balls of
the initial ; — 1 segment, and, for each of these, (n — j)! arrangements of the
n ~ j balls in the final n — j segment, each of which produces a win. Thus
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there are k(7 — 2)!(n — j)! wins with the given set of j — 1 balls as the initial
j —1 segment and n in position j. There are k("'l)(] —2)!(n—7)! wins with
n in the j th position and % less than j. The total number of wins W} with
this strategy satisifies Wi = k 21=k+1 ""1)(] - 2)!(n — 5)!. Thus

Wk___ki(n_—_l)'(]——’))(n_]) ki(_"__l)l

— 1) | —_

Of the n! possible games, the fraction that are wins is -E Z;; k41 '_,—1—1 Now,

which is the Riemann approximating sum to | ; "z—” (= —log f) for the in-
terval [0 1] partitioned into n equal pa.rts and evaluating 1 at the partition
points -’;, !‘-',’;—l, B2l Twelet o be & =, the fraction of the balls rejected,
the fraction of the total number of games that are wins is (asymptotically)
—zlogz. The maximum occurs when z is 1/e and equals 1/e. A more de-
tailed account of this maximization, especially as it relates the discrete to
the continuous, appears in Section 4 in connection with the identification of
the best “deterministic” strategy.

The strategies, reject k balls and choose the next highest, were the first
ones that had come to mind; there were certainly other strategies that made
sense. I said so. The young physicist commented that the 1/e strategy
was probably the best. John Tate said much more definitively that it was
surely the best. Starting from our initial assessment, winning 1/e of the time
certainly did seem splendid. “What better strategies could there be,” was
asked. I ventured, somewhat quickly and wildly again, that we could reject
k draws and choose the second highest draw to appear. John Tate reaffirmed
his feeling that there could not be anything better than the 1/e strategy.

That weekend, I pondered what might be meant by a “strategy” and
proved that Tate was right. The substance of that argument (in more pol-
ished form) is given in Section 4. It and the discussion of strategies is the
main point to this article.

Roughly a year after the events just noted, the following short argument
occurred to me for seeing that the strategy of rejecting the first fraction
of the draws and accepting the following high draw has serious potential,
independently of n. We partition an arrangement of {1,...,n} (a “game”)
into four (approximately) equal segments, the first through fourth “quarters”
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of the game, and track the location of the numbers n — 1 and n. There are
sixteen (roughly) equally probable locations of these numbers in the four
quarters. In three of these, when n — 1 is in the first quarter and n is not, a
win is guaranteed with the strategy that rejects the first quarter and chooses
the next highest. Of course, there are more wins with this strategy, but we
are assured wins in 3/16 of the games with no further calculation and no
dependence on the number n.

Bernard Koopman (our Department Chair at that time) had invited
me to prepare and publish these considerations in the fledgling operations
research journal. I declined, with the press of other mathematical work as my
reason. My thanks are due to Carsten Thomassen for convincing me that
I should not let “another forty years” pass without making this generally
available.

2. What is a strategy? This is a delicate and complicated ques-
tion. How do we rule out cups of coffee and horoscopes as components of
our potential strategies? We must strive for some semblance of rationality
in deciding what a strategy should be, but if we are too restrictive, we may
eliminate some approach that is valuable, though not clearly so. This is a sit-
uation not unlike the one confronting the mathematicians of the Eighteenth
Century — plagued by an undefined or ill-defined (and too restrictive) notion
of ‘function.’

At the very least, presented with a single game, that is, an arrangement
of the labeled balls in the order in which they will be ejected, a strategy
should specify when the game is ended — whatever goes into that specifi-
cation, rejecting a given number of balls, horoscopes, etc. In the broadest
sense, then, a strategy S is a mapping from a total ordering of the labeled
balls to some initial segment of that total ordering. The terminal element
of that initial segment is understood to be the one declared by the player to
have the largest labeling (for better or worse). We are not insisting that a
particular strategy is sensible or even practicable.

With this broad definition of strategy, of course there is a better strategy
than the 1/e strategy: map each total ordering to the initial segment that
ends with n. This might be called “the omniscience strategy.” It produces
a win every time and should definitely be preferred by total clairvoyants.
Seeking strategies that are practicable and rational, we can probably agree
that, when we declare the terminal element of the (ordered) set of ejected
balls to be the largest in a given game (that is, total ordering of the n balls),
then we should do so again when that initial segment appears as an initial
segment in another game. Since the integers of the labeling are supposed



Strategies in the secretary problem 129

to be totally unknown to the player, we must go even further in seeking
rational strategies and require that, when the initial segment of the same
length in the second game is order isomorphic to the initial segment that ends
the first game, then it ends the second game. We shall call such strategies
deterministic — the action at a particular draw, acceptance or rejection,
is completely determined by the available (order-theoretic) information. In
Section 4, the deterministic strategies are described more fully; it is proved
(Theorem A) that the “1/e strategy” is the best (produces the most wins)
among them.

If we have reached the fifth draw in a particular game, given that the
number drawn is larger than the four preceding, the question of whether or
not to end the game on the fifth draw seems to have little to do with the
first drawn number being larger than the second or the second being larger
than the first. It would seem that, having ended the game on the fifth draw
once (when the element drawn is larger than the four preceding), we should
end the game on the fifth draw each time the element drawn is larger than
the four preceding. These considerations lead to the definition of position
strategies. They are described by listing those positions at which the game is
allowed to end and by insisting that the game does end at the first of those
positions at which the element drawn is larger than all the preceding. To be
sure, these position strategies are deterministic. The position strategies are
analyzed, in detail, in the next section.

The argument for considering only the position strategies among the
deterministic strategies is a cogent one. On the other hand, the strategy that
ends a game the second time we draw a number larger than all the preceding
numbers drawn after rejecting, say, the first n/4 numbers drawn, certainly
has some credibility as a sensible strategy. It is not a position strategy,
though it is a deterministic strategy. If we are searching for the “best”
strategy within the realm of “reasonable” strategies (accordingly, ruling out

the “omniscience strategy”), we must take into account the full range of
deterministic strategies.

3. Position strategies. A strategy S that ends a game only in one
of a prescribed set of positions j; < j» < -+ < jr, and that does end the
game if it reaches one of those positions and the number at that position is
greater than all the numbers in positions preceding it, will be called a position
strategy, the position strategy based on positions ji,...,jr. Each j; will be
called a position for the strategy (or a strategy position). In this section, we
shall analyze position strategies and show that the position strategy based
on positions j,...,jr, in an n-element game, produces fewer winning games
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than the position strategy based on positions n—r+1,...,n. We shall prove
this in two ways. For the first proof, we construct an injective mapping from
the set of games won in one strategy into the set of games won in the other.
For the second proof, we develop precise formulas for the number of games
ending in each position for the strategy and for the number of games won in
each such position.

Suppose S is the position strategy that ends games at positions j; <
J2 < --- < j, and suppose that jx < ji. < jk+1. Let S’ be the strategy that
ends games at 71,72,. - \Jk=1,TksJk+15 Jk+25- - )5 (that is, 7 has been “shifted
further to the right” in the strategy S to produce the strategy S’). We shall
show that there are more wins in the strategy S’ than in S. Note that if a
game ends in one of the positions ji,...,jk-1 in 3, it ends at that position
in §'; it results in a win in either strategy if and only if n occupies that
position. Thus, denoting by ‘ws(j)’ the number of wins in position j in the
strategy S ;

ws(j1) = ws(f1),- .., ws(jr-1) = we (Jr-1).

At the same time, a win occurs in position ji in strategy S if and only if
the game ends at j; and n is in position j;. The game that ends at j; with
n in position j; in S will end at j, in S’ and result in a win in that same
arrangement, with the elements at positions jx and j} interchanged, for we
have not ended the game in positions j,...,jx—1 in this transposed game
(or it would have ended there before the transposition) and it cannot end
before j} in S’ having passed jx—;. Of course, with n in position j}, it does
end there and results in a win. Thus the transposition of the elements in
positions jx and jj is a one-to-one mapping of the games onto themselves
that carries the winning games in position ji in S onto the winning games
in position j} in §’. Hence ws(ji) = wer(ji)-

If n occupies position jn, the game is won there if it does not end before.
In strategy S, if the game has not ended in position ji, the element in that
position is not greater than all the preceding elements. If the element in
position jy is interchanged with the element in position j}, then the game
does not end at j;, and cannot end before, in strategy S’. Since the same
elements precede those at positions jk41,. - -,Jm~1 in the transposed game as
in the original, the transposed game does not end at these positions in S'.
Thus the transposition converts a winning game in position j,, in strategy S
to a winning game in position j,, in strategy S’. The reverse is not true for
positions jk41,-...,Js; @ winning game in strategy S’ need not be a winning
game after the transposition, in strategy S. The element at position j; in the
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game won at position j,, (m > k) may not end the game at position j, (and,
so, not block the win at position j,,) because some element in a position
strictly between ji and jj is larger than it. But when this same element has
been moved down to (“interchanged with” the element at) position jx it no
longer competes with that larger element (in a position between ji and j}).
It may very well be larger than the elements in positions 1,...,7x —1 and now
end the transposed game at position j; preventing the win in position j,.
Thus transposing the elements in positions ji and j} is a one-to-one mapping
of the set of games onto itself that maps the set of games won in strategy
S (strictly) into the set of games won in strategy S’'. There are more games
won in strategy S’ than in strategy S.

The lesson to be drawn from the preceding discussion is that a better
strategy is obtained by moving an ending position for the given strategy S
across a gap, to the right, to the position just preceding the following ending
position for S. Pursued, relentlessly, this “improvement” process results in
a strategy whose ending positions form an interval with terminal position
and total number of positions the same as for S. If the strategy S does not
include the n th position as an ending position, then adding it as an ending
position certainly improves the strategy: if we reach the last position with
strategy S and encounter an element larger than all the preceding (hence, the
largest), then of course we must accept it and win. Doing this does not, in the
least, diminish our chance of winning in an earlier position under strategy S.
Combined with what we have learned, this tells us that a best strategy must
be a “segment strategy,” reject the first given number of elements drawn and
then choose the first element larger than all the preceding. The discussion
of Section 1 indicates, now, that the segment strategy in which the first 1/e
draws are rejected (that is, exclude the first 1/e positions from the set of
strategy positions) is the best strategy.

Given an ordered r-tuple {(jy, j2,...,Jr) of numbers in {1,...,n}, where
J1 < j2 < -+ < jr, we develop a formula for the number of permutations
of {1,...,n} in which the number occupying position jm is larger than all
the numbers preceding it but this is not the case for the numbers occupying
positions 71, j2, ..., Jm-1. There are (J"l) sets of numbers from among
{1,...,n} that can occupy the first j; positions. for each such set there are
(n — 71)! arrangements of the remaining n — j; elements in the last n — j;
positions. For the given set of j; elements, with the largest of this set in the
71 position there are (j; — 1)! arrangements of the remaining elements. For
this given set of j; elements there are (j; — 1)!(n — j;)! arrangements with
the element in position j; larger than the preceding elements. Thus there are



132 Richard V. Kadison

(;;)(jl —1)(n — 7, )! arrangements of {1,...,n} with the number in position
J1 greater than all the preceding numbers, that is, n!/j, such arrangements.

Similarly, there are n!/j2 such arrangements for position j3; a certain
number of these have the number in position j; larger than all the numbers
preceding it, and we want to exclude these. For each set of j, numbers from
{1,...,n}, with the largest of the set in position j,, the remaining j, — 1
elements of this set can be arranged so that the number in position j; is
larger than all the preceding numbers in (j» — 1)!/j; ways and for each of
these ways there are (n — j2)! arrangements of the numbers not in the given
set of j, numbers. Thus there are

- (12—1) |=nl1_ L
Jz ( ) H—(n- j)t = J2 1 i

arrangements of {1,...,n} such that the number in position j, is larger than
all the preceding numbers and the number in position j; is not larger than
all the numbers preceding it.

Again, the number of arrangements of {1,...,n} that have the number
in position j; larger than all the preceding numbers is ;‘—; When we have

selected a set of j3 numbers from {1,...,n}, there are (""_1) 3=V (1—- 1) arrange-
n

ments of them in which the largest number is in posntxon 73, the number in
position j, is larger than all the preceding numbers and this is not the case
for the number in position j;, from the argument of the preceding paragraph.
There are LLa_J__lL arrangements of the j; numbers in the glven set with the
largest number in position j3 and the number in position j; larger than the
numbers in all the positions preceding it. Thus there are

a — 1)1 = (s 1 (_L:_l)_. - - -1
('73 1)' J2 (1 i : = (s 1)'( + Jl]2 I
arrangements of a given set of j;3 numbers chosen from {1,...,n} in which

the number in position j3 is larger than the number in all the preceding
positions, but this is not the case for the numbers in positions j; or ja.
There are

(J'.:)(n _‘73)'(]3 - 1)!(1 - (3]_1' ) + JlJZ) = (1 .71 ) nayy .71.12

arrangements of {1,...,n} in which the number in position j3 is larger than
all the preceding numbers and this is not the case for the numbers in positions
J1or ja.

The general formula begins to emerge. Define p} to be the sum of all the
reciprocals of products of h—1 distinct numbers from {j1,j2,...,Jk=1}, when
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h < k, and let pf be 1 for all k. We assert that the numbers of arrangements
of {1,...,n} in which the number in position j is larger than the number
in all the preceding positions and this is not the case for the number in any
of the positions jj, ..., jk—1 is

(1) (e —pi +ps -+ (=1)Fp)).

We prove this by induction on m. So we assume that (1) determines the
number of arrangements of {1,...,n} in question for all n when there are

fewer than m positions j;, j2, ..., Jm under consideration (that is when
k=1,...,m—=1).
For each set of j, numbers from {1,...,n}, there are (j,, —1)! arrange-

ments in which the largest of these numbers occupies the position j,,. We
must exclude from these arrangements those in which the number occupying
any one of positions jy, ..., Jm—1 is laiger than all the numbers preceding it.

. i —1)! . . . .. ..
First, we exclude (”"jl ) arrangements in which the number in position j; is

larger than all the preceding, then the M(l - -1-1-) arrangements in which
the number in position j; is larger than all the preceding but the number in
position j; is not larger that those preceding (for any such arrangement has
already been excluded in the (-’—’-"-l';)' arrangements described). Continuing
in this way, and using the inductive hypothesis, we exclude the

i —1)! L s
Um=tl(pk — pk + .- + (=1)F+1p})

arrangements in which the number in position jx is larger than all the num-
bers preceding it and that is not the case for any of the numbers in positions

J1y - -y Jk—1, Successively as k assumes the values 1, ..., j,;n—1. In total, then,
we exclude

m-—1
(2) Gm = 1! Y" L (pk = ph + - + (~1)+1pk)

k=1

arrangements of the given set of j,, elements chosen from {1,...,n} from
the (jm — 1)! arrangements in which the largest number of the set is in the
jm th position.

We note that Z::hl )lkpﬁ is phy,- With b < k, if we sum the reciprocals
of the products of h — 1 distinct numbers chosen from among {j1,...,jk-1}
(that is, form p}) and multiply this sum by -1.1:, we arrive at the sums of the
reciprocals of products of h distinct numbers from among {j1,...,Jjx}, where
one of the numbers is ji. If we, now, sum these sums as k assumes the values
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h, h+1, ..., m—1, the result is the sum of the reciprocals of all products

of h distinct numbers chosen from {ji,...,7m-1}, that is, the result is p?, ,.
It follows that (2) is equal to
(3) (m =Pz —p3" +---+ (-1)"P)

and that the number of arrangements of the given set of j,, elements with
the largest number in position jm, and the number in each of the positions
J1y +++ Jm—1 is not larger than all the numbers preceding it, is

m

(fm = D= (m = DAPT = P54 -+ + (=1)"pm) = (im — D! Y_(=1)**'p7".
h=1
Each of these arrangements carries with it (n — j,,,)! arrangements of n — j,,

numbers not in the set of j, numbers chosen from {1,...,n}. Finally, there
are (J:) choices of the set of j,, numbers. Thus there are

(2)(n = jm)Gm = DD (1) 1R
h=1

= 757 - PP + -+ (=)™ )

(4)

arrangements of {1,...,n} with the number in position j. larger than all
the numbers preceding it and this not being the case for the numbers in any
of the positions ji, 72, ..., jm—1. The inductive step has been established,

and the validity of the formula (1) follows.

Using (1), we shall, now, derive a formula for the number of arrange-
ments of {1,...,n} in which n occupies position j,, and none of the numbers
in positions ji, ..., Jm—1 is larger than all the numbers preceding it. Note,
for this, that in the inductive step of the preceding argument, if we insist
that n be in the set of j, numbers chosen from {1,...,n}, then there are
( -"-_11) instead of (J.") choices, n will, of necessity, be the largest number in
tﬂ'i"s Jm-€lement set,mand the remainder of the discussion is unaltered. Thus
the formula we are deriving becomes

m

(5) J':.—_ll)(n —Jm)(gm = 1)! ’g(__l)hﬂphm

=(n=1p* —p3* + -+ (=1)""p7).
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It is now time to recognize the expression appearing in (4) and (5) for
what it is:

6) ' =p5 +- -+ (-1)"pn=(1-1)(1-%)(1-75) (m22).

A few moments of thought on how the terms of the expansion of the right-
hand side of (6) as a sum are formed and the definition of p}' is sufficient
to establish this identity. We add a few lines of formal argument. De-
fine pn(ky,...,kr) to be the sum of the reciprocals of all products of A — 1
distinct terms from among {k;,...,k.} and p;(k;,...,kr) to be 1. Thus
o =pu(J1, ...y Jm—1). Define cpm(ky,..., k), with m > 2, to be

p1(k1,. ey km—l) —pz(kl,. . -,km—l) 4+ + (fl)m+1pm(k1,. . -;km—l)-
Note that, when2 <h<m -1,

Ph(ity- ooy ime1) = Ephct(izs- - dme1) + P(izs - -rGmo1)

and that
plﬂ(jl'l R ;jm—-l) = %Pm—l(jh s ajm—l)-

Thus
Cm(jla e 7jr)

= Z( DM pa(its- - s im-1)

m—1
= Z(—l)h+lph(j2$ .. 7jm—l) - 3!1' Z(—l)h+lph(j21- .. sjm—l)
h=1 h=1
= (1 - J*ll')cm—l(j% e :jr)
=(1- L)(1 (1= i ,)CZ(Jm-ly )
=(1-7+ )(1"~ (1“,~m (-2,

which establishes (6).

It is clear from (6) that p* — pI* + --- + (—=1)™*1p™ is positive when
each j, > 1 — though, this is clear, as well, from the interpretation of (4)
and (5) as certain numbers of arrangements. Less clear is the fact that (5)
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increases if some ji is replaced by a larger j;, where 1 < k < m — 1, though
this is apparent from the product formula given by (6).

The meaning of the information about arrangements of {1,...,n} given
by (4) and (5) in terms of our position strategies is immediate. If S is
the position strategy corresponding to positions ji, ..., jr, then (4) is the
formula for the number of games ending in position jy,, in this strategy and
(5) is the formula for the number of games won at position j., in strategy
S. As just noted, the shift from j; to a larger j; increases the number of
wins at positions jx+1, ..., Jr (and leaves the number of wins in positions j,,
.. Jk=1, j; unchanged). Thus this shift produces a strategy that leads to
a greater number of wins than the original strategy. Again, this time from
the formulas (4), (5), and (6), we can conclude that the position strategy
corresponding to positions n —r +1, ..., n is better than (or at least as good

as) S.

4, Deterministic strategies. In this section, we study the deter-
ministic strategies, establishing various formulas and showing (Theorem A)
that there is a unique deterministic strategy yielding the maximum num-
ber of wins (among the deterministic strategies) and that it is the position
strategy: Reject the first n/e draws and choose the next draw larger than
these.

Since the deterministic strategies are completely described in terms of
order, their description is best given in order-theoretic terms. Toward this
end, we let A be the set of ordered k-tuples, k = 1, ..., n of numbers from
{1,...,n} with distinct terms ({1,5), (8,6,3), and (1,...,n) are members
of N, but (2,6,2) is not, where n > 8). We refer to k as the length of a
k-tuple b in A/ (and we denote this length by ‘|b|'), so that A is equipped
with a “grading.” We define the relation ‘~’ on A as “order-isomorphism”
of elements a (= (ay,...,ax)) and b (= (b,...,bk)). Thus a ~ b precisely
when a; < a,, if and only if b; < b, for all j and h in {1,...,k}, where the
integers have their usual ordering. Of course, ~ is an equivalence relation on
N. Let A be the set of equivalence classes of elements of A under ~.

With a in A, denote by ‘@’ the equivalence class of a. Since equivalent
elements of NV have the same length, A inherits the grading of A let ‘|a|
denote the length of each of the elements in @&. We refer to |@| as the length
of a.

Define ‘a < ¥, for elements a and b of A/, to mean that @ is an initial
segment of b (so, for example, (3,1,2) < (3,1,2,5,7}). The relation < is a
partial ordering on N'. We denote by ‘<’, again, the relation inherited on
N from < on A; that is & < b precisely when a < b for some a in & and b
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in 5. Of course, @ < @ foreach @in N. Ifa < B, then a < b for some a in
@ and b in b, whence & has length not exceeding that of b. If, at the same
time, b < &, then @ and b have the same length. Thus a and b have the same
length. Since a is an initial segment of b, a = b, whence @ = b.

Suppose @ < b and b < & Then there are a, b, ', and ¢, in &, b, b, and
¢, respectively, such that a < b and ¥’ < c. Let a have length j and let ag be
the initial segment of ¥’ of length j. Since b ~ b’ and a is the initial segment
of b of length j, we have that a ~ a¢ so that @ = @,. Now, g < ¥ < ¢,
whence @ < & It follows that < is a partial ordering on N.

The deterministic strategies may be described in these order-theoretic
terms simply as a subset S of N with certain properties, it being understood
that the elements of S are the order-types of the initial segments of games
that cause those games to end when they occur at a given draw. The key
condition for a strategy to be deterministic translates to a property of S. If
d and b are distinct elements of S, then a and b are not comparable (that is,
we have neither @ < b nor b < @). We call a subset in which distinct elements
are not comparable disordered. Thus the deterministic strategies correspond
to subsets S of A that are disordered.

Another factor that needs consideration in our discussion of “rational”
strategies is the avoidance of “deliberate” losses. It does not seem to make
sense to end an n-element game before the n th draw at an element smaller
than some previously drawn element. That would guarantee a loss and the
associated order type could never produce a win. We prove that a strategy
corresponding to a disordered subset S of A that includes a “deliberate”
loss (some @, where ¢ = (a,...,ax), & < n, and a; < a; for some j in
{1,...,k —1}) can be improved to a strategy corresponding to a disordered
set without such losses. For this purpose, define a top element of A as a k-
tuple (by,...,bk} (= b) such that b; < by for each j in {1,...,k}. Of course,
each member of bisa top element of N if one of its members is. In this case,
we call b a top element of V.

If S is a disordered subset of A and &, in S, is not a top element, with
|&@] (= k) less than n, order the numbers 1, ..., k so that the resulting ordered
k-tuple (al, yax) (= a) lies in a. Now let S’ be § with & replaced by
where a' = gal, ,ak,n). Note that S’ is disordered, for if b< a’, with b
in §', then b < @ (sxnce @ has been removed from S, b # &). As b and a
are in S, this relation would contradict the assumption that S is disordered.
On the other hand, if @’ < & with & in S’ (hence, in S), then & < &, again,
contradicting the fact that § is disordered. Of course, the new element a’
corresponds to wins for S’ while @ produces no wins for S. Since S and §’
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differ only at the elements @ and a’, all other wins are shared by each of
them. It follows that S’ has more wins than S (and one fewer “deliberate”
loss). Continuing in this way, we arrive at a strategy corresponding to a

disordered subset S" with all members top elements of /', having more wins
than S.

Definition. A deterministic strategy is o disordered subset of N con-
sisting of top elements.

We establish some formulas in the present framework. They will be
useful in showing that the best deterministic strategy is a position strategy.
With k and h positive integers such that k < k and @ in A of length k,
we determine the number of top elements b there are in A of length h such
that & < b. Each such b is the equivalence class of some arrangement of the
numbers 1, ..., h. How many such arrangements have their initial segment
of length k in &, reserving h for the last element since b is a top element?
Each choice of k numbers from {1,...,h—1} can be arranged in just one way
so that the resulting ordered k-tuple lies in @ There are, then, (h — k — 1)}
arrangements of the remaining h — k — 1 elements (exclusive of k) to yield
top elements b of N such that & < b. For distinct choices of k elements from

{1,. — 1}, the corresponding sets of (h — k — 1)! top elements of N are
disjoint ( the arrangements of 1, ..., h are different for the different choices).
Thus there are

o G

top elements in our set A of length h greater than a given element & in N
of length k.

With b a top element of length & in N, each choice of h numbers from
{1,...,n} including n (thus, a choice of h — 1 numbers from {1,...,n —1})
can be arranged in just one way so that the corresponding ordered h-tuple
lies in b. Corresponding to each such choice, there are (n — h)! arrangements
of the remaining n — h numbers. It follows that when b is in a deterministic
strategy S, there are

n—1)!
(8) )(n =) = G
wins associated with b. Since there are k,l) such elements b greater than
a given element & of length k less than h (from (8)), there are

R=1)! (n=1)! _ (n—1)!
(9) { HOh=1)f T

wins in position k that are eliminated if @ is part of a strategy.
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Theorem A. There is a unique deterministic strategy that produces
more wins than any other deterministic strategy. It is a position strategy.

Proof. Let S be a deterministic strategy and let s; be the number of
elements in S of length h. From (8), there are

(n=1)t
(10) Zs ey
(h—=1)!

wins with this strategy. For each element in S of length k, there are —

top elements of A of length h greater than it. None of these top elements
are in S since S is deterministic (disordered). The number of top elements
in NV of length A is (h — 1)!. Thus

h—1 h—1
(11) 0<si <h-11=> stB = (h-1)1-) %l
k=1 k=1

Note that two distinct elements of S cannot have some one element of N
greater than each of them, for then they are comparable, while S is assumed
to be disordered. For the preceding inequality, then, we are not counting,
more than once, the same element of A of length h prohibited membership
in § by virtue of being larger than some element in S of length less than A.
Note, too, that subject to the inequality (11) and to the condition that the
numbers s, are integers, there is a deterministic strategy S that corresponds
to these values s;. To see this, observe that having chosen subsets S, ...,
Sp—1 of N such that S; has s; elements each of length j and U;'_llS is
disordered, the inequality (11) is precisely the condition that there is a set
S of s, elements in N each of length h none of which is greater than any
of the elements of U]_'llS' Then U _15' is disordered. In this way we build
the desired strategy S (= Uj.,S; ) with s, elements of length h for each h
in {1,...,n}.

Letting ¢x be %%, we may rewrite (11) as

h-1

0<ta<31-) i
k=1

or

h-1
(12) 0<th, hta+) t<1 (h=1,..,n)
k=1
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Each of these inequalities determines a closed half-space. The set K of points
(r1,-..,7a) in R™ satisfying all of these inequalities (with r; in place t;) has
ry < % Thus K is a compact, convex subset of R™.

Without taking into account whether or not there is a deterministic
strategy corresponding to the numbers s, ..., sn, if we consider the prob-
lem of maximizing (10) by choices of s, satisfying (11), it translates to the
problem of maximizing 3., _, hts by choices of ¢, satisfying (12). Now, the
possible values for s; form a finite set so that the possible points (t1,...,%,)
in K constitute a finite subset. Nonethess, we shall study the question of
maximizing the linear functional

Fio (rieyra) = D hry
h=1

on K. Of course f attains its maximum on (a closed face of the compact
convex) K (and at an extreme point).

Suppose that (21,...,t,)isa point in A at which f attains its maximum.
We can assume that n is 3 or greater, for the question of best strategy is trivial

when n is 1 or 2. We note that the point (1,0,...,0) is not a maximizing

point since (0, ,3,0,...,0) lies in K and

f(1,0,...,00=1< 2 = f(0,3,,0,...,0).

We prove the following assertion.

(*) Ifty =0 for some k, then ki, + Zj;,l t; < 1.

Itlstruewhenkls 1. fty=0and 2ty +¢; =1, theniép =---=¢, =0
since kit + E t < 1. But we have just noted that (1,0,...,0) is not a
maximizing po:nt for f. Thus (*) holds when k is 2. Assume, now, that we
have proved (*) for all values less than k¥ + 1. Suppose & > 2 and tx4; = 0.

If
1=(k+1)tepr + Zt Zt,,

j=1 j=1
then

ktk+Zt,—(k—1tk+Zt (k=1)tr+1<1.
=1
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Since 1 < k — 1, we must have that ¢, = 0, whence

k-1
1=th=ktk+z:tj,
1=1

1=1 )=

contradicting our inductive hypothesis. Thus

k
(k+ tggr + Zti <1,

=1
and (x) is valid for all k.
We show, next, that t; = 0 for j < k if tx = 0. Suppose t; = 0 so that

2

-1 k-1
ti=kti+» t; <1
= j=1

k
Jj=1

If t4 > 0 for some h in {1,...,k — 1}, choose ¢ positive and less than ¢; and
k=1 — Zf;ll tj]. Let (uy,...,u,) be the result of replacing ¢, and #; in
(t1,...,tn) by ty — € and ¢, respectively. Then 0 < u; for all j and

p—1

p—1
Pup+y u;<pty+ Y t;<1
j=1 j=1

when p € {1,...,n}. Thus (u;,...,un) € K. But
n n n
fltroootn) =) 5t <> juj =Y jtj+ (k- h)e = f(us,...,un),
j=1 j=1 j=1

contradicting the choice of (t1,...,t,) as maximizing. Thus t; = 0for j < k
when ¢ = 0, as asserted.

Assume, now, that t; =t = --- = t; = 0 and #t4+1 # 0. From what
we have just proved, ti42, ..., tp are all positive. Suppose that for some r
greater than &
.
(F+Dtrpn+ )t <1,
i=1
Choose ¢ positive but smaller than r~*[1 — (r + 1)t,41 — 307, t;] and ¢,.
Let (vy,...,vn) be the result of replacing ¢, and t,4, in (t1,...,t,) by t, —¢
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and t,41 + ¢, respectively. Then v; 20 for each j and

p-1 p—1
pvp-l—Zvj Sptp+ztj <1
j=1 j=1

when p € {1,...,7,7+2,...,n}. Thus (v1,...,v,) € K. But

n n n
f(tl,...,tn)=2jtj =Zjvj —€<Zj'vj = f(v1,...,v2),
j=1

i=1 j=1

contradicting the choice of (¢1,. . .,¢,) as maximizing. We conclude from this
that (r + 1)t,4; + E;=1 ti=1lforallrin {k+1,...,n}.
The equalities

r—1

(13) ==t =0, rt,+th=1 (r=k+2,...,n)
j=1

imply that

r—1 r
rte=1-3 t;, (r4+ Dt =1-2 tj=rt,—t, = (r — )t
j=1 j=1

Thus ¢4, = %tr, from which

_r=2 _(r=2)(r-3)
i, = trep = —W—trq
(=D = k),
T =1 (k+3)

_ (k-:(f)ikl-;- Dyern = ;%’;_)(1 —te41) (P=k+2,...,0).

s

Hence the maximizing point (%1,...,ta), lies on the line segment in R®
whose points (z; ..., .) satisfy

zl:...:xkzo,
_ (k+1)

= (1 -2z r=k+2,...,
=1 _1)( k1) n),

e T3
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The maximizing point for f (assigning ) " j=1J%; to points (z1...,25) In
R™) occurs on this segment (at an endpomt and 0 is proscnbed by our
assumptlon that tr4q1 ;é 0) when x4, is k+_1 Thus t; = --- =t = 0,

tep1 = k+1’ and t, = r(,__l) Thus

n n n n-1
doiti= Y dti= Y Fp=k)y L
j=1 j=k

7=k+1 j=k+1

The values t; just determined (in terms of k) arise from a deterministic
strategy Sk with s, elements of length h, where s; = .-+ = s; =0 and

sh=h!th=k(h—2)! (h=k+1,...,n)

that produces (n—1)! E;’:l Jtj = n!;‘;— Z" ,: 1 wins. The strategy S; rejects
j

the first k elements drawn then accepts anyone of the k! top elements on the
k + 1 st draw, should one appear, then any of the top elements that do not
have their initial segments of length k + 1 top elements appearing on the
k + 2 nd draw, and so forth. In other words, S} is the strategy that rejects
the first k elements drawn and then accepts the next element drawn larger
than all of those.

We want to find k in {1,...,n — 1} that maximizes n!% E,_k 3> equiv-

1
£ ik %, our interest is in maximizing this expres-

sion for “large” n. By forming the Riemann approximating sum to |, ﬁl ‘;—”

alently, that maximizes =

based on the partition of [%, 1] into subintervals of length 1 and evaluating
% first at all the left endpoints and then at all the right endpoints of the
partition subintervals, we conclude that

n 1 n—1
1 dy 1
b fovs
j=k+1 n =k
Thus
n—1 1
k 1 _k d kel _ 1 1
0<z ;—;ﬁ N
j=k n
It follows that the choice of k that maximizes > f —E puts £ Z;’_,: j

within 1 of its maximum. Writing z for £, the maximum for —zlogz (=
fl ﬂ) on [1,1] occurs when z is 1/ and that maximum is 1/e. This value
of z corresponds to choosing n/e for k and the strategy produces more than
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n!/e wins. If we alter this choice of k replacing it by the nearest integer, z
changes by less than 1 and —zlogz changes by less than e/n. This would
change the number of wins on the order of (n — 1)! which is an insignificant
fraction of the total number n! of games. Thus, asymptotically, the best
deterministic strategy is to reject the first (approximately) n/e elements
drawn and then to accept the next draw larger than all of those (if there is
such and, otherwise, proceed to end of the game — with a loss).

5. Postscript. My thanks are due to Ronald Graham' and Mogens
Hansen for reading the manuscript; each noted a small error (both, hopefully,
corrected). Special thanks are due, again, to Ronald Graham for supplying
me with copies of several articles, published over the years, on the secretary
problem. I had heard this name for the problem some ten years ago from
a junior colleague (after talking casually about various items of this nature
over lunch), but he gave me no references. Apparently there is a vast and
lively literature on the subject. The earliest allusion to the problem is to a
statement of it by Andrew Gleason in 1955 followed by his comment that he
had heard it elsewhere. He had not heard it from me, but during the sum-
mer of 1955, at a summer meeting of the AMS, Gleason and I discussed the
problem at an evening gathering (we have been friends since 1950). He men-
tioned it to me asking me what I thought the answer might be. I teased him
by musing for a few seconds and then remarking that you should probably
reject about one third and then choose the next highest. I cannot remember
whether I left him “amazed” (and silent) at my speed (!) or told him the
full (Columbia) story.

My intention was to include no references; I knew none. I now know too
many. Since referencing is not really pertinent to this article, I shall include
just two serious, general references from which the interested reader can gain
access to the literature.
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